16,715 research outputs found

    Rotary antenna attenuator

    Get PDF
    Radio frequency attenuator, having negligible insertion loss at minimum attenuation, can be used for making precise antenna gain measurements. It is small in size compared to a rotary-vane attenuator

    The development of a model to infer precipitation from microwave measurements

    Get PDF
    To permit the inference of precipitation amounts from radiometric measurements, a radiative interaction model was developed. This model uses a simple computational scheme to determine the effects of rain upon brightness temperatures and can be used with a statistical inversion procedure to invert for rain rate. Precipitating cloud models was also developed and used with the microwave model for frequencies of 19.35 and 37 GHz to determine the variability of the microwave-rain rate relationship on a global and seasonal basis

    Spectra of phase point operators in odd prime dimensions and the extended Clifford group

    Get PDF
    We analyse the role of the Extended Clifford group in classifying the spectra of phase point operators within the framework laid out by Gibbons et al for setting up Wigner distributions on discrete phase spaces based on finite fields. To do so we regard the set of all the discrete phase spaces as a symplectic vector space over the finite field. Auxiliary results include a derivation of the conjugacy classes of ESL(2,FN){\rm ESL}(2, \mathbb{F}_N).Comment: Latex, 19page

    A Simple Algorithm for Local Conversion of Pure States

    Get PDF
    We describe an algorithm for converting one bipartite quantum state into another using only local operations and classical communication, which is much simpler than the original algorithm given by Nielsen [Phys. Rev. Lett. 83, 436 (1999)]. Our algorithm uses only a single measurement by one of the parties, followed by local unitary operations which are permutations in the local Schmidt bases.Comment: 5 pages, LaTeX, reference adde

    The use of thematic mapper data for land cover discrimination: Preliminary results from the UK SATMaP programme

    Get PDF
    The principal objectives of the UK SATMaP program are to determine thematic mapper (TM) performance with particular reference to spatial resolution properties and geometric characteristics of the data. So far, analysis is restricted to images from the U.S. and concentrates on spectra and radiometric properties. The results indicate that the data are inherently three dimensional compared with the two dimensional character of MSS data. Preliminary classification results indicate the importance of the near infrared band (TM 4), at least one middle infrared band (TM 5 or TM 6) and at least one of the visible bands (preferably either TM 3 or TM 1). The thermal infrared also appears to have discriminatory ability despite its coarser spatial resolution. For band 4 the forward and reverse scans show somewhat different spectral responses in one scene but this effect is absent in the other analyzed. From examination of the histograms it would appear that the full 8-bit quantization is not being effectively utilized for all the bands

    Plasma wave instabilities induced by neutrinos

    Get PDF
    Quantum field theory is applied to study the interaction of an electron plasma with an intense neutrino flux. A connection is established between the field theory results and classical kinetic theory. The dispersion relation and damping rate of the plasma longitudinal waves are derived in the presence of neutrinos. It is shown that Supernova neutrinos are never collimated enough to cause non-linear effects associated with a neutrino resonance. They only induce neutrino Landau damping, linearly proportional to the neutrino flux and GF2G_{\mathrm{F}}^{2}.Comment: 18 pages, 3 figures, title and references correcte

    Is the effect of birth weight on early breast cancer mediated through childhood growth?

    Get PDF

    Quantum Phase Transitions in Anti-ferromagnetic Planar Cubic Lattices

    Full text link
    Motivated by its relation to an NP\cal{NP}-hard problem, we analyze the ground state properties of anti-ferromagnetic Ising-spin networks embedded on planar cubic lattices, under the action of homogeneous transverse and longitudinal magnetic fields. This model exhibits a quantum phase transition at critical values of the magnetic field, which can be identified by the entanglement behavior, as well as by a Majorization analysis. The scaling of the entanglement in the critical region is in agreement with the area law, indicating that even simple systems can support large amounts of quantum correlations. We study the scaling behavior of low-lying energy gaps for a restricted set of geometries, and find that even in this simplified case, it is impossible to predict the asymptotic behavior, with the data allowing equally good fits to exponential and power law decays. We can therefore, draw no conclusion as to the algorithmic complexity of a quantum adiabatic ground-state search for the system.Comment: 7 pages, 13 figures, final version (accepted for publication in PRA

    Quantum Mechanical Interaction-Free Measurements

    Full text link
    A novel manifestation of nonlocality of quantum mechanics is presented. It is shown that it is possible to ascertain the existence of an object in a given region of space without interacting with it. The method might have practical applications for delicate quantum experiments.Comment: (revised file with no need for macro), 12, TAUP 1865-91
    • …
    corecore